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ABSTRACT /7¢§ g A

The distribution of relativistic unbound charged particles in
the static magnetic field of a dipole with respect to a monoenergetic,
isotropic, time independent homogeneous distribution at infinity is
determined by assuming Liouville's theorem and the Stormer theory
of allowed and forbidden regions for unbound particle motion. For
an isotropic distribution, the allowed solid angle for particle motion
at any given point (r,0,¢) in the field is determined by mapping
point (r, 0, ¢) into the allowed and forbidden regions of Stdrmer
space, via the Stormer transformation, at a particular particle
impact parameter. The totally and partially shielded regions are
defined and are examined with particular emphasis on the shielding
effectiveness of the partially shielded region to charged particles.
The volumes of the totally and partially shielded regions are numeri-
‘ cally computed. Once the totally and partially shielded regions are
1 established, the momentumn cutout in momentum space at point (r,0,9)
is determined by mapping the point into the totally, partially, and
unshielded regions in Stormer space with particle momentum as a
variable. These methods are then used to compute the proton flux
ratio at points on the surface of a spherical spaceship as a function
of particle kinetic energy.

The theory is applied to the dipole field of a finite current.
loop and a study of the totally and partially shielded regions shows that
the partially shielded region provides protection in the high energy
regime where the totally shielded region is effectively nonexistent.
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SUMMARY

— [ S R a3 _ . a1

FIN€r s tneory is summarized and the behavior
of the allowed and forbidden regions with varying particle impact
parameter is presented. Liouville's theorem is applied to the static
magnetic field and the particle distribution is assumed to be in equilib-
rium over.time. With these assumptions, the distribution function of
particles in phase space at any given point (r, 6 , ¢) in a dipole field
is determined, given the isotropia-diistributionat infinity. If an isotropic
angular distribution at infinity is assumed, we find we can determine the
allowed directions for particle motion at point (r, 6, ¢ ) by mapping
the point into the allowed and forbidden regions in Stéormer space, via
the Stormer transformation, at a particular particle impact parameter.
The properties of the totally and partially shielded regions are then
enumerated. Once the totally and partially shielded regions are es-
tablished we find we can determine the momentum cutout in momentum
space at point (r, 6, ¢) by mapping the point into the total, partial,
and unshielded regions in Stormer space with particle momentum as
a variable. These methods are then used to find the proton flux ratio
at points on the surface of a spherical spaceship as a function of particle
kinetic energy. It is assumed that the spaceship offers no material
shielding to the impinging particles. It is shown that the shielding
effectiveness of the magnetic field depends strongly upon the shape
of the volume to be shielded.
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Finally the Stormer theory is extended to the finite current
loop, and expressions for the allowed directions for particle motion
and the momentum cutout at any point in the field are derived. The
shape of the totally and partially shielded regions as a function of
particle energy is studied and we find that the partially shielded region
provides protection in the high energy regime where the totally shielded
region is effectively nonexistent.

I. INTRODUCTION

For many years the motion of charged particles in the earth's
magnetic field has been studied. Stormer studied the motion of charged
particles in an infinitesimal dipole field. He numerically integrated
the equations of motion to study special families of orbits and did the
original research on the allowed and forbidden regions for particle
motion. His work explained many of the interesting features of the
aurorae and is presented in his book [2] . In 1933, Lemaitre and
Vallarta refined St8rmer's theory and studied envelope s of families
of bound orbits adding additional information concerning the allowed
unbound orbits through a given point in the field. Their work is sum-
marized in Ref. [ 4]. Alfvén [12] added many original contributions
and studied unbound particle orbits in the regime where the particle
magnetic moment is essentially a constant of the motion. Chapman
and Ferraro [13] postulated the existence of an equatorial ring current
during a magnetic storm and Trieman [14] , Ray [15] , and others
[16, 17] studied its effect upon the cosmic ray cutoffs on the earth.
Quenby and Webber [18] took into account the higher order nondipole
terms of the internal field of the earth and recalculated the cosmic ray
cutoffs on the earth's surface. Liist [19], Jory [20], and Kelsall [21]
numerically integrated the equations of motion to determine the impact
zones of solar cosmic ray particles upon the surface of the earth.

The discovery in 1961 of superconductors with higher critical
fields and higher critical current densities awakened new interest in the
possibility of the shielding of space vehicles with high magnetic fields gén-
erated by large currents flowing indefinitely in superconducting materials. The




magnetostatic field generated by the circulating currents would provide
continuous protection against charged particles in space. Dow [22],
Tooper and Kash [23] , Brown [24], and Levy [11 Jhave studied the
shielding effectiveness of magnetostatic and electrostatic fields from

a systems standpoint. Tooper and Kash concluded that an electro-
static system of concentric spheres was impractical. Dow showed

that if ordinary conductors were used to carry the large currents,
passive shielding is always superior. Levy considered a single current
loop and concluded that magnetic shielding was superior weightwise

for high particle energies (approximately 1 Bev). Urban [10] studied
the allowed and forbidden regions of two coaxial current loops and also
the magnetic quadrupole. Tooper and Kash initiated a study of the
allowed and forbidden regions of the infinite solenoid. The study of
these basic geometries is helpful in understanding the basic physical
principles involved and is necessary to discover the interesting charac-

teristics of each magnetic configuration. The 1960 International System
of Units is used throughout this report.

II. STORMER THEORY SUMMARY

A. General Equations of Charged Particle Motion in a Static
Magnetic. and a Static Electric Field

The Lagrangian for charged particle motion in a time -independent
magnetic and a time -independent electric field is:

L= T-211
where - -

T = T (I1-1)
and

U=-qA-v + qép (I1-2)

The quantity -gA o v + qfr is the generalized potential for charged
particle motion in a static magnetic and electric field. Employing
spherical coordinates (r,0,¢), and assuming the magnetic vector
potential and the electrostatic potential are functions of r and 0

only, the Euler-Lagrange equation provides two equations of motion
and a first integral of motion corresponding to the cyclic coordinate ¢ :




. . . ,0
mf -mrf? - mr sin® 4% - q sing ¢ Ag(r,0) - qr sin 6 & %‘iﬂ(—r——)

,0
+ q 8a¢rE (r,0) _ 0 (i -3)

mr? j + 2mrtH - mr? sin Ocos 0 ¢% -qr cos 6 P A¢(r,9)

. ,0 0 ,0
- gqr sin 6 ¢ -%%-(i-——) + q _a—(b_g-(l_) = 0 (1I1-4)

mr? sin® 6 ¢ + qr sin 6 A¢(r, 6) = P¢ = constant of the motion
(I1-5)

Since the Hamiltonian is independent of time [1 ], it is a constant of
the motion:

H = T + q¢g = constant of the motion

B. Charged Particle Motion in a Steady State Dipole Magnetic Field

In a static magnetic field, the Lorentz force

F = ql E + v x E]
is perpendicular to the velocity vector during the motion, for E = o.
As a result, the speed of the particle or the kinetic energy of the particle

is a constant of the motion. Rewriting Eq. (II-5) and dividing by the
magnitude of the mechanical momentum, mv , we obtain

AUt R < - (11-6)
v P pr sin 6
if
Q= -L=siny (11-7)
2v= - %ﬁ | (I1-8)

o>




-6) becomes

o = ¢ , 27 . (11 -9)

T p r sin 6

For an infinitesimal dipole:

- ﬁx;
A= 4nr

If the dipole is orientated along the z-axis (Fig. 1) then A, = Ag = 0,

M sin 6
Ag= R (11-10)
Substituting Eq. (II-10) into Eq. (II-9):
gM sin® 2
Q 4rp r2 * r sin 8
If
2 _ gM )
Cgt = irp (II-11)
then
Q = c2, 5n6 , 2% (I1-12)

, r2 r sin 6
The angle ¥ is the angle the velocity vector makes with the
meridian plane or sin Y = -v e \74,.

If the canonical momentum component Pg , a constant of the
motion, is evaluated at infinity, A¢ -+ 0 and -2Y becomes the
impact parameter. For a particle whose velocity vector lies in the
equatorial plane the impact parameter is the closest distance of
approach to the z-axis with the magnetic field absent. In general,
-27 is the ratio of the particle angular momentum about the
dipole axis to the total linear momentum at infinity, and is a constant
of the motion. To an observer traveling with a group of monodirec -
tional particles impinging upon the dipole, the sign of the
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impact parameter distinguishes between those particles passing to the
left and the right of the dipole, assuming the field is absent. The
Stérmer radius, Cgt , has dimensions of length and for bounded motion
is the radius of a particle with charge q and a momentum p moving
in a circle in the equatorial plane of a dipole of strength M . The
unbounded orbit in the equatorial plane with ¥ = - 1.0 is asymptotic

to this bound orbit. However, we shall be concerned only with un-
bounded motion and the Stormer radius is considered a lumped parameter.
Since the magnetic field simply changes the direction of motion, a
particle originating "'at infinity' returns to infinity. Reducing the right
side of Eq. (II-12) to a nondimensional form by introducing the non-
dimensional parameters

v = (I1-13)
Cst
T
p= (IT-14)
Cst
we obtain the familiar Stormer equation[2] :
s _ sin @ 2y
Q = siny = s + 5 sin © (I1-15)
Since Q= -v¢/v, particle motion is restricted to those regions such
that -1.0=Q=1.0. Solving Eq. (II-15) for p :
.2
0 sin® 6 (I1-16)

-y ﬂ:'\/‘72 + Qsin’ 6

The restrictions that p remain positive and real places restrictions
on the parameters Y and Q, i.e.

<0

(I1-17)

@)
n
)




sin® 6 Q>0
P, = no restrictions (II-18)

-v+ Vy? + Qsin’® 6 on %

2 Q < 0

p, = 510 - (Q =7v%/sin3 0 (I11-19)
—7+'\]7_/2+Qsin39 ¥ <0
:n? O Q<0

p3 = =2 Q =752 /sin’ 6 (11 -20)
AJ7T2 +Qsin’6 |7 < 0

Using p(—l, 1) as a shorthand notation for "p(?, Q) with v= -1.0
and Q=1,0," p, (7 1) defines an inner forbidden region with Q = 1.0
on its outer boundary. Q is greater than 1.0 within this region. For
=v<0,pP,(Y,-1) and p3 (7, -1) define an outer forbidden region
w1th Q = -1.0 on its outer boundaries. Q is less than -1.0 within
this region and particle motion is forbidden. The forbidden and allowed
regions are plotted in Fig, 2 for three values of v. For v <-1.0,
P(Y, -1y and P, (7, -1) define an inner allowed region; and an outer
allowed region extends from 03 (7,- 1) to infinity. The outer_forbidden
region exists for - w=v<0 and disappears at ¥ = 0. For ¥ slightly
greater than zero, the inner forbidden region sends up small appendages
on either side of the dipole axis. Thus the z-axis is in an allowed region
only for 7 =0, and the origin is accessible only to particles such that
-1.0 < ¥=0. Since Eq. (II-16) is independent of ¢ , the forbidden
regions are rotationally symmetric about the z-axis. The behavior
of the forbidden regions as Y varies is described in a later section.
Throughout this section, the particles are assumed to move at non-
relativistic velocities. However, Eq. (II-12) is valid at relativistic
velocities and all previous statements are valid if we use the relativistic
expressions for the momentum and kinetic energy:

1
2 212 :
b = [T +C2Tmc] (I1-21)
1
T = [pzc2 +rn2c:4]'2 - mc? (I1-22)




The particle speed is a constant of the motion, since the Lorentz force
is perpendicular to the velocity vector for E = 0, Relativistic equations
of motion are derived in Appendix I.

C. Stérmer Space and Related Topics

The Stormer transformation (Eq. II-14) isa trans-
formation which connects the radial coordinate r with kinetic energy,
T . The distribution function of particles in phase space f (r,0,¢, T,
a,BYy—>f(p,0,¢,a,B8). Thus, instead of considering orbits of particles
of different energies in a fixed field, we may find the orbit of a particle
with a given energy in Stérmer space, (p,0,¢). Then by a linear
change of scale, we know the orbits for particles of any other energy
with the same injection point and direction of injection into the field.

The advantage of studying the forbidden and allowed regions in
Stormer space is as follows., The equations

rg/Cgt (T) (11 -23)

Pg

2
p = sin 0 (11_24)

1+\/lisin39

define the radius of the earth (a sphere) and the inner and outer for-
bidden regions in Stormer space for Y = -1.0. Equation (II-24) is
invariant with particle energy, while the earth's radius changes ac-
cording to Eq. (II-23). p is nondimensional and therefore the scale
has no units. In real space the equations become

rp constant (I1-25)

H
|

. 2 )
Cst [ == ] . (I1-26)
1 +‘\/1 + sin? 0

In real space (r,0,¢), the radius of the earth is fixed and the for-
bidden regions change with particle energy according to Eq. (II-26) .






The scale has units of length or units of Cg . Cgt is a given number
of meters depending, in a fixed field, upon the particle's charge and
momentum.

Figures 3 and 4 show Cgt for electrons and protons as a
function of particle energy in different dipole moment magnetic fields.
At nonrelativistic energies, in a fixed field:

1 1
Cstlp™) mg - Te-J°
As the particle energy increases without bounds:

Cs;(e-) -1.0
Cst(p+) ) )

Thus the electrons in a low-energy monoenergetic beam of electrons
and protons are deflected by the magnetic field sooner than the protons.
In real space,atnonrelativistic energies, the forbidden regions in a

dipole field for protons should be scaled by a factor 6.6 to arrive at

the forbidden regions for the electrons. At relativistic energies, the
field does not distinguish between electrons and protons, that is, it

is equally effective as a shield.

From a mathematical standpoint, the Stdrmer equation (Eq.II-15)
is a necessary condition that a particle must satisfy to exist at a given
point. Sufficiency is guaranteed by solving all of the equations of motion
simultaneously., The p curves shown in Fig. 2 are the outer boundaries
of the allowed orbits projected upon the meridian plane. St8rmer
showed that particle motion could be broken into two coupled motions —
motion of the particle within the meridian plane and motion of the
meridian plane about the dipole axis. Equation (II-9) corresponding
to the cyclic coordinate ¢ determines the angle the velocity vector
makes with the meridian plane as a function of position within the
meridian plane, as the particle impact parameter varies.

11
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III. PARTICLE DISTRIBUTION IN THE MAGNETIC FIELD
s OF AN INFINITESIMAL DIPOLE

A, Liouville's Theorem and Its Application to a Static Magnetic Field

Consider a swarm of n particles in a 2n phase space (q;,P;),
i=1,..., n. At a particular time t assign a number to each point to
represent the density of particles per unit volume of real space per
unit volume of momentum space. Define a scalar point function
f(q;,Pi, t)"‘ with the aforementioned units to give the function relation-
ship between the numbers. Then, taking the total derivative:

af oo faf . of o |, of
o k= P+ (II1-1)

Applying Liouville's theorem and assuming the particle density is low
enough so that the particles do not collide:

df
— =0 I111-2
T ( )

— =0 is also the mathematical statement of the collisionless, no
radiation loss, Boltzman equation.

Assuming the particle distribution is in equilibrium over time:

If the generalized coordinates and generalized momenta satisfy Hamil-
ton's canonical equations of motion:

aH_-_.aH_p.
aPi_ql'aqi_-l

“In this paper, small parentheses are used to indicate functional
dependence within an equation.

14




then

of aH af gH

0 (II1-3)

or

[f, H] = O (111 -4)

where the brackets of Eq. (III-4) are the Poisson brackets. Consequently,
(Ref. 1) f is a constant of the motion along a trajectory generated by

the Hamiltonian in phase space. Equation (III-2) is the mathematical
statement of Liouville's theorem. If the nature of the force field is
known, Liouville's theorem will furnish information about the particle
distribution in the field without solving for the trajectories of individual
particles and recording the number of particles in each volume element
with a given energy and direction over a large time interval.

Since the equations of motion of a charged particle moving in
a static magnetic field can be derived using Hamilton's canonical equa-
tions of motion (Appendix I), and assuming the particle distribution is
in equilibrium over time, and applying Liouville's theorem, then the
distribution function f is a constant of the motion along a trajectory
through phase space.

Consider a six-dimensional space composed of three position
coordinates and three canonical momentum coordinates. For applica-
tion to a static magnetic and static electric field, it would be more
convenient to apply Liouville's theorem to 2 six-dimensional space
composed of three position coordinates and three mechanical momentum
coordinates. We will show that the Jacobian

9(a, 92, Q3,P1’,Pz’, Pi) -1
0 (ql:TqZ’: q§9 P11, P2 p3) (III-S)

15



under the transformation

q; = 493
i=1,2,3 (IT1-6)

P; = pi + gbjAi(q;)

where A; is the ith component of the magnetic vector potential, Pj
is the canonical momentum and pi' is the mechanical momentum.
Writing out this sixth order determinant and observing that

oPi _ 5., .09 _ 5., .09 _ 39 89j .
ap; M ’odj Yop;  daqy Opi °

[ASIN AN
w W

-

—
1}
—
-

o _ olghyAil_ q‘:aAi b Ay Bhi]z By

R L

the determinant becomes

1 0 0] Bn B, B3,
0 1 o - B2 B2z Bs2
0 0 1 B B;s B3
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

and when expanded, the determinant is equal to one. This was first
shown by Swann [3] who noted that Eq. (III-5) is valid even when a
static electric field is present; the canonical momenta are still given
by Eq. (III-6). Thus we may integrate over mechanical momentum
space instead of canonical momentum space. Henceforth, the word
momentum will refer to the mechanical momentum.

16




B. Monoenergetic, Isotropic, Homogeneous Distribution at an
Infinite Distance Away from the Dipole

Let f(r, 1_5) be the distribution function referred to in Liouville's
theorem where q;, Pi" i=1,2,3 are the components of r and P,
respectively. The mechanical momentum vector P may be defined
by giving the kinetic energy of the particle and the direction of motion:

f(r,p)d’p = £(z, T,Q) dTd Q. (IT1-7)

Since the speed v 1is a constant of the motion, vf(;,_ﬁ) is conserved,
by Liouville's theorem, along a trajectory in phase space which connects
two points in real space. Of course, a given point in real space may

be intersected by more than one trajectory through phase space, but
Liouville's theorem states that f(r,P) is constant and has the same
value along a given trajectory and its projection in real space. Further-
more, trajectories cannot intersect in phase space. Liouville's
theorem together with the constants of motion determine the distribu-
tion functions which are constant at two points in real space connected
by a trajectory through phase space. The equations of motion provide

us with the coordinates of the two points along with the limits on the
integrals. For an isotropic distribution, it is unnecessary to determine
the direction dependence of the particle orbit explicitly. Flux is defined
by the integral:

o(r) = fQ Jp i, T, Q) dT 4 Q. ‘(III-8)
From the last section:

f(r,P)d®P = f(r,pdp = flr,T,N)dTaQ .

i
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Henceforth, we shall drop the differentials when referring to the
distributi on function.

The flux "at infinity'" is

2Fw) = foy o vi(zr, T,Q) dT dQ (II1-9)
o0 0

5() JQ fT vi(r, T, )dT dQ :

=) . S— (I11-10)

@ Teo Jo fva(r,T,Q)oodeQ
o0

Invoking Liouville's theorem:
VE(F T,Q) = vi(r, T.Q)y . (ITI-11)

For a monoenergetic, isotropic, homogeneous source at infinity of
energy T,

VE(F, T, Q) = 6 [T - Ty (re)] . (IT1-12)

Equation (III-10) becomes

- §[T - T, (rg)] dT AR
2((?) - foT~ O-» (III-13)
* - Q
o JglT - To )] aTa
dQ = sin o dadﬁ (III-14)
2@  2n
B(roy) 47 fal(;)sm"‘d“ = >lcos @y - cos @] (I-15)
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Referring to Fig. 1, ¥ is the angle between the velocity vector and
the meridian plane; and @ is its complement. The particle distri-
bution vi(r,T,Q) is symmetric in angle S , since Eq. (II-15) is
invariant to rotation of v about the perpendicular to the meridian
plane. Equation (II-15) defines a cone of directions with half angle a:

. _ _ sin@ 2
cos @ = siny = Q = ¥ + e § (I11-16)
and Eq. (III-15) becomes:
3 () 1 ~ -
@((;l) =3 [Qilr) -Q:(r)] . (II1-17)

To determine Q; and Q,; , we must examine the expansion and con-
traction of the forbidden regions, defined by Eqs. (II-18), (II-19), and
(I1-20), with varying impact parameter.

C. Dependence of the Forbidden Regions on Impact Parameter

An isotropic distribution at 1_':,0 implies that the impact param-
eter of a particle may have values -w0= -27Y=<wor -w=-27=<wx,
T > 0. Differentiating Eqs. (II-18), (II-19), and (II-20):

o _1 + Y (I11-18)

oY Q sin 6 Q sin OY72 + Q sin’® 6

9P, pi - 1 _7— (II1-19)
oY Q sin 0 Q sin V7% + Q sin3 6

0 1 Y

e R L. - Y (IT1-20)

R Q sin 6 Q sine\/V’- +Q sin> 6
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The inner forbidden region defined by 01(7, 1) is very small compared
to the outer forbidden region defined by pP,(7, -1) and p3 (7, -1), for

¥ << -1.0. As v >0 the inner forbidden region expands with respect
to p and the outer forbidden region contracts. The outer forbidden
region disappears at ¥ = 0 while the inner forbidden region continues
to expand as y becomes more positive.

Given a point (r, 0, ¢), the equations

r/Cst (I11-21)

©
1}

sin 6 2
+ ;
p? p sin 6

(I11-22)

define Q, given Y and Cg; which is defined by Eq. (II-11). Consider
the important case 7Y = -1.0 shown in Fig, 5. In light of the preceding
discussion, if the point falls within the inner forbidden region, it will
forever be inaccessible to incoming particles regardless of their impact
parameter , for the inner forbidden region expands as Y increases
from -1.0. As 7Y becomes slightly greater than -1.0, point B will
begin to see particles until for some 7 (Q = 1.0) the inner forbidden
region engulfs the point. For case C, as 7 increases from -1.0,

the outer forbidden region will contract until point C falls on its boundary
Q =-1,0. As 7 continues to increase point C will continue to see par-
ticles with various Q until for some 7Y (Q = 1.0}, the inner forbidden
region will engulf the point,

To analyze case D, we shall have to consider the case ? < -1.0,
For some large negative Y (Q = -1.0), point D will fall on the boundary
of the outer forbidden region. As Y increases from this value, the
outer forbidden region will contract and point D will begin to see parti-
cles. Let 7 continue to become more positive, then point D continues
to see particles of various Q until for some Y (Q = 1.0) the inner for-
bidden region will engulf point D.

Thus, at a particular v, namely Y = ?c = -1,0, points within
the inner forbidden region will never subtend any solid angle to incoming
particles. Points within the inner allowed region will subtend a solid
angle ranging from slightly greater than 0 up to slightly less than 47,
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There will always be a range of impact parameters such that points
within the outer forbidden and.outer allowed region will subtend 47
solid angles to incoming particles, regardless of the distance from
the dipole since -0 <27= « ., With Liouville's theorem in mind,

at ¥ = Vc = -1.0, points within the outer allowed and outer forbidden
regions canbe connected up to infinity in any direction by trajectories
through phase space. Points within the inner allowed region can be
connected up with infinity in certain directions. Points within the
inner forbidden region can never be connected up to infinity by a tra-
jectory through phase space. Thus the inner forbidden region is totally
void of particles regardless of the particle distribution at infinity.

In any magnetic field whose outer forbidden region completely
surrounds the inner forbidden region at some 7 = Vc , and whose
forbidden regions behave in the same manner as the forbidden regions
of the dipole field in the sense that one forbidden region expands while
the other contracts with varying impact parameter, then the inner
forbidden region at v = Y. Wwill always be completely void of particles
regardless of the particle distribution at infinity. From Eq. (II-9),
for -0=27 = o, it appears that the forbidden regions in ‘any magnetic
field will behave in this manner if A¢O’1/r , n=2 .

We define Qc as the value of Q computed from Eq. (III-22)
with Yy =¥ = -1.0. cos~! Q¢ is the cone half angle of the allowed solid
angle subtended at points within the inner allowed region.

sin 6 2 2 sinf 2C st

= - = C -
Qe p? p sin 6 st T2 r sin 6

(I11-23)

We can determine which of the four regions point (r,6,¢) will be mapped
into, under the Stormer transformation, by performing tests on Q¢
and 0 Q./0p . The four regions have the following unique properties:

Inner forbidden region: Q. =1.0

Outer forbidden region: Q¢ =-1.0

Inner allowed region: -1.0<Qc<1.0 and dQ./dp<0
Outer allowed region: -1.0<Q.<0 and @ Qc/0p >0
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Given a point (r, 6,¢ ) and computing Q. from Eq. (III-23) then:

-
ir) = 0 _if Q¢ =1.0 (completely shielded region) (II1-24)
2 (Too)
’D(;) if Qc=-1.0 (completely unshielded region)
—_—— = 1
3 (To0) if -1.0<Qc<0 and%—cic>0 (I11-25)
®(T) 1 . 0Qc
= — - - < < —_
Y] 5[1-Qclif -1.0<Q. <1.0 and > <0
{partially shielded region) (111 -26)

Figure 6 shows the totally shielded and partially shielded regions in
the (p,8) plane. The regions are rotationally symmetric about the
dipole axis. ‘

A refinement of the theory by Lemaitre and Vallarta predicts
that certain directions are forbidden within the inner allowed region
for -1.0< 7 =-0.788541 but our use of the Stdrmer theory will predict
conservative results without resorting to numerical integration to
determine bound orbits. Their theory, briefly, is as follows: orbits
are not distinguished by the total energy such as orbits in a gravitational
field. In Stormer space, a particle's orbit depends only upon its in-
jection point and the direction that itis injected into the field
(since the particle kinetic energy is a constant of the motion). Lemaitre
and Vallarta have shown [4,5, and 6] that bound orbits exist within
the inner allowed region even when the outer forbidden region has
opened up — allowing unbound particles from infinity to enter. These
bound orbits are bounded by an inner periodic and an outer periodic
orbit which coalesce as 7 —-0.788541. If a bound orbit passes through
a point p , that direction is forbidden to unbound particles and also
to other bound particles following different orbits; for none of the
trajectories in phase space can intersect in phase space. Since kinetic
energy is a constant of the motion, this direction at § is forbidden
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(P=1.0, 8=w2)

m COMPLETELY SHIELDED
REGION: Q=0

-~ PARTIALLY SHIELDED
REGION: O0< Q <4~

E COMPLETELY UNSHIELDED
REGION: ) 2 4w

Fig. 6-SHIELDED REGIONS OF AN INFINITESIMAL MAGNETIC
DIPOLE FIELD IN THE (p,8) PLANE.
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to all unbound particles, regardless of their kinetic energy. Schremp [7]
has shown that at points p within the inner allowed regions, an infini-
tesimal and/or a finite bundle of bound orbits may pass through p

Thus infinitesimal or finite solid angles, or both, may be forbidden to
unbound particles arriving at points (p,8) within the inner allowed
region.

We can also add further information to Fig. 6 about the range
of impact parameters particles must have to exist in a region of the
(p,0) plane. Solving Eq. (III-22) for 2 7:

sin@ ]

27 = sin0[Qp - 5

(111-27)

Suppose we reverse our procedure and plot curves of constant Y with

Q as a parameter. Let us divide the range of Q for allowed motion

into two sub-intervals: -1.0=Q =0 and 0<Q =1.0. For -1.0=0Q=0,
v is negative and particles with negative impact parameters may exist
anywhere within the (p,0) plane except within the totally shielded region.
For 0<Q=1.0, setting 27 =0 in Eq. (II1-27) provides the following
information: inside the boundaries of the surface

p1(0,Q) = \/Sige (111 -28)

particles with negative impact parameters may exist. Outside this
surface, particles with positive impact parameters may exist. The
surface P4(0,1) = Vsin 0 is the smallest surface of these Q and

Y = 0 surfaces. Examining the entire interval -1.0=Q =1.0,p,(0,1)
defines a limiting surface. Inside this surface, only particles with
negative impact parameters may exist. Outside this surface, particles
with positive or negative impact parameters may exist. 0,(0,1) is
the dotted curve plotted in Fig. 6. p; (-1,1) is the boundary of the
completely shielded region. Particles within the volume bounded by
these two surfaces have impact parameters within the interval

-1.0 =7 =0. We notice that the partially shielded region lies within
this volume. Consequently, particles existing within the partially
shielded region must have impact parameters within the interval
-1.0= v =0. Other curves plﬁl, 1), -1.0< ¥; =0 could be plotted
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on the (p,f) plane. These curves would fall inside p,(0,1). Particles
with impact parameters within the interval 0 =7 ﬁ?, may exist any-
where inside these surfaces except within the totally shielded region.
Thus only particles with a definable range of impact parameters can
exist within a small volume within the partially shielded region. This
range lies within the interval -1.0=7 =0 .

The advantage of the above approach is that we can find easily
the range of impact parameters that particles must have to exist
within a given arbitrary volume in Stérmer space, given an isotropic
distribution at infinity. We note that we have studied the behavior of
the inner forbidden region P,(¥, 1) with varying impact parameter
to determine the range of impact parameters particles must have to
exist within a given volume in Stérmer space. We studied the inner
and outer forbidden regions to determine the allowed solid angle at
all points in Stérmer space, given an isotropic distribution at infinity.

Given a point in Stormer space, we can also determine the
range of impact parameters of particles passing through the point.
The cone half angle of the allowed solid angle at any point within the
partially shielded region is given by Eq. (III-23) and 27 is given by
Eq. (I11-27). The range of impact parameters of particles passing
through a point (p,8) within the partially shielded region can be found
by allowing Q of Eq. (III-27) to take on values from 1 to Q¢ . Similarily
the range of impact parameters of particles passing through a point
(P, 0) anywhere within the unshielded region can be found by allowing
Q to take on values from 1.0 to -1.0.

Number density f(r) with units of pa,r‘cicles/c:m3 is defined
in terms of the flux by

f(r) = E’ér—) : (I11-29)

Dividing Eqs. (III-24), (III-25), and (III-26) by v , we obtain the number
of density ratio at any point in space:

(F)

: - )
Gy - 0 if Qc =1.0 (1I1-30)
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(@ if Qe =-1.0

= 1.0

£x oo) if -1.0<Q¢ <0 and %—%Q >0 (I11-31)
f(r) _ 1 . a0
fiE) - 5 [1-Qc] if -1.0<Qc<1.0 and—af <0 (I111-32)

D. Isotropic, Continuous Energy Distribution Homogeneously

Distributed an Infinite Distance Away From the Infinitesimal
Dipole

1. Integrated Differential Number Spectrum or Flux Spectrum

In this section, we shall determine the flux spectrum and cutoff
momentum or energy at any point in real space. We shall study the
mapping of a given point (r, 8,¢ ) in real space into Stormer space
(p,6,¢) under the Stérmer transformation, with particle energy as
the variable.

A continuous flux distribution in energy can be thought of as
made up of many monoenergetic distributions of varying intensity.
Given the energy spectrum of the flux at ro, the energy spectrum
at r can be computed at as many energy points as desired using the
derived Eqs. (III-24), (III-25), and (III-26) for the monoenergetic

distribution. Rewriting these equations to emphasize their energy
dependence:

Hr) ) _
3y - 0 H Q(M=1.0
o(r) . if Qc(T)=-1.0
3(r o) if -1.0< Q.(T) <0 and _aa%c> 0
o(r) 1 _ 29c
b(te) 2 [1 -Q.(T)] if -1.0< Qc(T)< 1.0 and 5y <0
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C%t (T) sin 6 _ 2Cs(T)

Qc(T) = r2 r sin 6

However, we must determine the cutoff energy at point (r,6,¢). Con-
sidering the Stormer transformation p = r/Cst(T) , point (r,0,9)
maps multiply into Stérmer space (p,60,9) as the particle energy
varies (see Fig. 7). Particle energies corresponding to points falling
within the totally shielded region will not be seen at point (r,0,9).
Particle energies corresponding to points falling within the partially
shielded region will be seen at point (r,0,¢) within an allowed solid
angle less than 47 ., Particle energies corresponding to points falling
within the unshielded region will be seen at point (r,0 ,0) over a 47
solid angle. The totally shielded region is distinguished by the fact
that Qc(T) =1. Outside this region Qc(T) < 1. Solving Egs.(II-14)and (IT-11)
for the momentum:

(II1-33)

We note that the particle momentum is proportional to ¢, if the
particle is allowed at (p,0). Consequently, the maximum particle
momentum not seen at (r,0,¢) corresponds to the point falling on
the boundary pi1(Yc, 1) of the totally shielded region.

Given the arbitrary continuous spectra and notation of Fig. 8
~and a point (r,0,9) then:

2 —
” _ aMp (e, 1) . .
Peutoft Yer 1) = Gz if Qc{(Pmin) =1.0 (111 -34)
_ i _ ) _
PoutosrYer 1) = Py M Qelp . ) <1.0 . (111 -35)

Of course, the cutoff energy T ('_y; , 1) is related to the cutoff

cutoff
momentum by the relativistic equation:

|-
™~

T(7,Q) = [p?(v,Q) c? + m?c*]® - mc? . (I11-36)
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Other curves of constant Q. are also plotted in Fig. 7. We
notice that other cutoff momenta can be defined, keeping in mind the
mapping of (r,0,¢) into Stormer space as particle energy varies.

The maximum particle momentum not seen at (r,0,¢) within a cone

. with half angle cos ! Q¢ corresponds to the point falling on the boundary
p(;c, Q.). Particles with momenta less than pcyutoff(Yc, Qc) are
allowed anywhere within this cone of directions and are forbidden outside.
This cone opens up as the particle momentum increases. Figures 9

and 10 show the cutoff energy for protons versus angle cos™! Q. above
the eastern horizon at various magnetic colatitudes on the surface of

a spherical spaceship with a 10 meter radius and a dipole moment

of 2.51 x 10° weber-meters. For the earth and for our spaceship

M/r? = 2.5) x 10" webers/meter.

The allowed cone is just closed for particle momentum

2 2
_ aM sin®g
pcutoff(-l’ 1) - 472 [1 + .\/1 ¥ sin’ 9:} . (111-37)

The cone is half open for particle momenta less than

_ gM sin*6

(‘196) 47'1'1‘2

p (II1-38)

cutoff

and greater than pcytoff(-1,1). The cone is fully open for particle
momenta less than

(I11-39)

f('l: "1)

qM sin?0 12
Prutof

2
% L1+ Vi - sinded
and greater than pcytoff(-1,1).

Let us turn our attention to the flux ratio. The flux ratio at
point (r,6,¢) is < 1.0 in the momentum range pyfl, 1) < p<p; (-1, -1)
and is equal to 1.0 for p =p,(-1, -1) where p(V,Q)'——“[qM/‘Mrz] p%(7,Q).
By Eq. (III-33) the particle momentum is proportional to p%? . However,
the functional dependence of T upon p varies with energy, being
proportional to pz at relativistic energies and to p* at nonrelativistic
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energies. Since Py(-1,1) =P, (-1,-1) =1.0, the relativistic effect
results in a smaller spread of energy where the {lux ratio is less than
1.0. The flux ratio at these energies, on our sphere, is proportional
to 1l - T™ "at nonrelativistic energies becoming proportional to

1 - T7! at relativistic energies in the middle and low latitudes for
particles with Cg;>> 1.0. Because Ty(-1,1) =T,(-1, -1) in the
higher latitudes, the flux ratio is approximately a linear function of
energy. Since the difference T;(-1,1) - T,(-1, -1) increases with
decreasing latitude and since their magnitudes increase with decreasing -
latitude, the flux ratio becomes very nearly proportional to 1 - T

in the energy range T;(-1,1) <T <T,(-1, -1) on the equator. Figures
11 and 12 show this type of behavior.

The number density spectrum at point (r,0, ¢) can be found
in exactly the same manner as the flux spectrum with a cutoff momen-
tum given by Eqs. (III-34) and (III-35).

2. Differential Number Spectrum

Since we know the cutoff momentum and the allowed solid angle
as a function of particle energy at point (r, 6,9), the differential
number spectrum is easily found. Differential number spectrum is
defined by the integral

f N(E, T Q) a0 particles
Q(F) e cm® sec Mev

(TI1-40)

N(r, T) = jg’zmvf(?, T,0) a0

Let N(;, T, ) = N(r, T,Qiso)oo; i.e., an isotropic, homogeneous,
continuous energy spectrum at infinity. The differential number spec-
trum ratio is

F,7,0)dQ
NET)  Ja@E T

T - (ITT-41)
N(roo: T) JQ(;: w(;, T, Q)oon

Invoking Liouville's theorem:

N(IT:T,Q) = N(?’T’Ez)oo = N(;siT!Qiso)oo
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Eq. (III-41) becomes

N@E,T) _ 27Qu(T) - Q,(T)]

N(r,, T) ~ C(T) (I11-42)
where
c(m) = [ N, T,Q5,, de. (II1-43)
Q(r.) *

The problem of determining the limits in Eq. (III-42) is the same
problem previously encountered in the last section. Consequently,

N(r,T) _ .
' NELT) 0 if Qq(T) = 1.0 (I11-44)
N(;, T) _ if Qc(T) = -1.0
NEoT = 10 0
o’ if -1.0< Qc(T)< 0 and a—;c >0 (I11-45)

N(E,T) _ 27[1 - Qc(T)]

. ' Q¢
N(?oo:T) = e if -1.0<Qc(T) <1.0 and <0.

90 11 -46)

Likewise, the cutoff momentum at point (r,0,¢) is given by Eqs. (III-34)
and (II1-35).

3. Volume Integral of the Particle Density and Shielding Effec-
tiveness of the Partially Shielded Region

A figure of merit or omnidirectional attenuation factor which
describes the effectiveness of the magnetic field as a shield against
particles impinging upon volume V from all allowed directions is
defined:
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F(E;) _ humber of particles within volume V(E) with the magnetic field absent
number of particles within volume V(p) with the magnetic field present
(I11-47)

1
fraction of the number of particles permitted to enter V(p)

~  g(Fa
(I11-48)

We have mapped our volume into Stérmer space via the Stdrmer trans-
formation. If the volume to be shielded lies wholly within the totally
shielded region, F = o corresponding to an infinite attenuation co-
efficient. If any of the volume to be shielded falls outside the totally )
shielded region F< «w. To shield a crew compartment completely
against a monoenergetic, isotropic distribution of protons, the crew
compartment should be an oval toroid encompassing the entire totally
shielded region. The magnetic moment of the dipole field will be a
minimum under these conditions. The number of particles within
volume V(p) with the field present is:

g(p) = fv £3)av = [ [ [£(F) Cat p* sin 6 dpd6d¢ . (II1-49)

The number of particles within volume V with the field absent is
equal to the number of particles within volume V at infinity;

glped = f f(p) AV = J Jf f(Peo) Cot p? sin 0dpdodé. (II1-50)
v
Assuming the distribution is monoenergetic at infinity,

R JJJ floe p? sin 6 dpdod¢
F(p) = ——— (1-51)
JJJ £(p) p* sin6 dpdod¢
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If the distribution is isotropic at infinity, Eqs. (III-29), (III-30), and
(II1-31) provide f(p). Let us compute the attenuation factor of the
partially shielded region:

27T .7 P ('19 - ) -
jg 2 £(p,)) p* sinB dpdod¢

F(p) = =L
z7r7r Pz (-1, -1) £(pg) sin@
j (-1,1) 2 1 - 5z T ps1n9]p sin 6 dpdfd¢
(111-52)
R 2
F(p) = (111 -53)
L]"Z[sinze 2p] dpd6
1 - P1
f7rl‘p22 e on 3 ._AN
J p Siil gy updo
oM
where
+ 2 N
pl(-lil) = a0 9
1+ \}l + sin 6
(111 -54)
. 26
p2(-1,-1) = aaet

1++/1 -sin®*0 ~“

Equation (III-53) was integrated over p first and then numer1ca11y
integrated over 6 using Simpson's rule with A6 = 0. 5 giving the
result —>F(E) = 1,22, To interpret this number, let us map the totally
and partially shielded regions into real space and disregard any
specific volume to be shielded. The partially shielded region is simply
a semi-transparent region adjacent to the opaque totally shielded
region whose omnidirectional attenuation coefficient is 1.22, indepen-
dent of the impinging particles' momentum,charge, or dipole moment
of the field. The physical dimensions of these regions are ,importantly,
functions of these three parameters, i.e., the particle Stormer radius.
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Let us compute the volume of the totally and partially shielded
regions, i.e.,

-1,1)
v p1 o1 (- 1 1)
o = 27Cy ff s1n9dpd6 = 0.147 Cst (III-55)
(-1, -1
P2 ) . mapal(-1, -1) ,
\ = 21Cy [ f pz S1n9dpd9 = 0.808 C%; (III-56)
pl(']"l) 0 pl(

The above 1nteograls were evaluated numerically using Simpson's rule
with A6 = . The partially shielded region is approximately 5.5
times the volume of the totally shielded region. Of course, these
volumes are a function of the particle Stdrmer radius and can be very
large for low energy particles as we shall observe in a later section.

Let us consider two specific volumes to be shielded to examine
the directional shielding provided by the dipole field over the surfaces
of these volumes for monoenergetic particles. Let the first volume
be a sphere (dotted curve in Fig. 7) with the dipole at its center. The
low latitudes near the equator are completely shielded, the middle
latitudes are partially shielded and the high latitudes are completely
unshielded. For a given small distance inside the surface of the
sphere, the allowed solid angles in the high latitudes are greater than
the allowed solid angles on the equator. Consider an oval-shaped
toroid whose surface coincides with the outer surface of the partially
shielded region. The high latitudes are shielded better than the low
latitudes. For a given small distance insidé the surface of the toroid,
the allowed solid angles in the low latitudes are greater than the
allowed solid angles in the high latitudes — diametrically opposite to
the spherical case. The determination of the optimum shaped volume for a
given particle energy distribution is a subject we shall not investigate
in this paper.

4, Constant Flux Surfaces
In this section we will study the constant flux contour surfaces

to gain a better understanding of the allowed solid angle and momentum
cutout at any point in a particular magnetic field. Let f be the flux
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ratio. From Eq. (III-31), in the partially shielded region,

3 (r) 1 C%t sin 0 2Cst
— === f = =11 - - . =
3 (Too) 2 ] r2 + r sin 6 | (II1-57)
Rewriting Eq. (III-57) in cylindrical coordinates R,$,z),
2
2f = 1 CstR _, 2Cst (II1-58)

[R%2 + z2]32 R

To determine the curves of constant flux in the equatorial plane we
set z =0 and solve for R ,

2
[2f - 1] R? -2RCg4+Cqe = O (I11-59)
1+ ~/2[1 - £]
R = Cg s f A2 (111-60)
2f - 1 | :
C
R = —Zs—t; f =1 (II1-61)

To determine which sign must be chosen in Eq. (III-60), we will let
f be greater than and less than 1/2. If f < 1/2, Eq. (III-60) becomes

R = Cgt

1+ ~f2h - f]J (I11-62)

- |2f - 1

We choose the minus sign so that R will be positive. If f>1/2,
Eq. (III-60) becomes

1+ V2[1 - £]

R = Cg¢ >
|2f - 1}

(111 -6 3)
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1f we choose the positive sign, R can be greater than Cg¢ and

double valued. But we know that the Stormer transformation is a linear
transformation and that the constant f surfaces lie in the partially
shielded region:

Cg[V2 -1]=R=1.0 Cg¢ for 0={=1.0

Therefore, we choose the negative sign again and

[me—
) -
R = Cgt |*5¢ -1 f 4 (I11-64)
2f -1
Substituting for Cgt and solving for the particle momentum,
1 -
1 2
2 M 1 - 2[1 - f
pt = [4132} [ 3% _[1 JJ A N (111 -65)
L
1 1 [qMm |3
2 - 2|14 2 _ 1
P - 2 [47TRZ s f = 2 (III-66)

Equations (III-65) and (III-66) are plotted in Fig. 13 for singly charged
particles in the earth's field. These constant f curves connect points

in the equatorial plane which subtend the same allowed solid angle,

and therefore are also curves over which the differential number spectrum
ratio is equal to f . The constant f curves do not intersect showing

that the allowed solid angle is unique at every point in the field for an
isotropic, monoenergetic distribution at infinity. The region beneath

the f = 0 curve is void of particles. The region above the f = 1.0 curve
subtends a 47 solid angle to the particles.

The curves of constant f in the (R, z) plane, i.e., the meridian
plane, are the Stormer curves of constant Q within the inner allowed
region for ¥ =-1.0, and are shown in Fig. 14. The radial coordinate
in Stormer units has been converted to earth radii for select proton
kinetic energies. The curves are symmetric about the dipole axis
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and in the x-y plane generating toroidal surfaces in real space. We
notice that the constant f surfaces are not uniformly spaced. The
surfaces are spread out in the low latitudes encompassing a large
region of real space, becoming closer together in the high latitudes.
They are infinitesimally close together at the origin. We also observe
that the partially shielded region extends out many earth radii in the
equatorial plane, beyond the geomagnetic cavity boundary for low
energy particles.
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IV. PARTICLE DISTRIBUTION IN THE MAGNETIC FIELD
OF A FINITE CURRENT LOOP

A. Isotropic, Continuous Energy Distribution Homogeneously
Distributed an Infinite Distance Away From the Current Loop

A finite circular current loop of radius, a, consists of a con-
ductor with an infinitesimal cross-sectional area carrying a very
large current. As the loop radius approaches zero, the vector poten-
tial of the finite dipole approaches the vector potential of the infinitesimal
dipole. The vector potential is in the same direction as the current,
and the magnetic field is an axially symmetric field about the current
loop axis. The loop is in the xy plane with its dipole moment vector
directed along the positive z-axis. The vector potential is given by
Ref. [8].

_ Mol ¢ dr
E=Fta § 3 (v -1)
_ Mk? C(k) .
Ag = m°a [r® + a‘ + 2ar sin 0]2 (Iv-2)

where

4ar sin 0
2 _
k"= r2 + a2 + 2ar sin 0 (Iv-3)

M 2

polma

C(k) is a special complete elliptic integral and is defined in terms
of the complete elliptic integrals of the first and second kinds [9] :

[2 - k%] K(k) - 2E(k)

C(K) =

(IV-4)
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_ ™ d¢
K(k) = Jo [l - k% sin2 ¢]k

E(k) = j(’)ﬂ]z[l - k2 sinqu]% aeé

As k=0, C(k) »7/16 ; andas k—1, C(k) > . The vector potential
approaches infinity at the loop and we would expect a forbidden region
to exist around the loop. Substituting Eq. (IV-2) in Eq. (II-9):

qMk? C(k) b 27
pr2alr2 + a2 + 2ar sin 0]2 r sin 6

(IV -5)

Dividing the numerator and denominator of the quantities on the right
hand side of Eq. (IV-5) by C%¢ and Cg¢ respectively:

4k? C(k) 27
Q = + IV-6
ax[p2+ A% + 2Apsin 8]% " psin 6 ( )
where
Az 2 V-7
Cot ( )
K2 4Ap sin 6 1V -8)

T DPZFX t2hpsin O

Observe that we have a new parameter X which is a measure of the
particle Stormer radius in comparison to the radius of the loop. Thus,
in Stormer space, the boundaries of the forbidden and allowed regions
are no longer independent of the particle Stormer radius. Consequently,
A is treated as a new parameter and for a given Q, ¥, and A,

Eq. (IV-6) is solved by iteration to find P as a function of 6 . For

a given A , the forbidden and allowed regions behave exactly in the
same manner with varying impact parameter as the forbidden and
allowed regions of the infinitesimal dipole. For some large negative

Y , the outer forbidden region completely surrounds the inner forbidden
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and inner allowed region. At Y = 0, the outer forbidden region dis-
appears. As ? becomes more positive, the inner forbidden region
continues to expand indefinitely. Reference [10] contains a clear de-
scription of this behavior. The forbidden and allowed regions have
the same properties as the forbidden and allowed regions of the in-

finitesimal dipole at ¥ =7 :

Inner forbidden region: Q. = 1.0 (IV-9)
Outer forbidden region: Q¢ = -1.0 (IV -10)
) 0Qc
Inner allowed region: -1.0< Q¢ < 1.0 and—~ < 0
ap
30 (IV-11)
Outer allowed region: -1.0 < Q. < 0 and aNC > 0
o

The (BJ, ’5) coordinate system is defined subsequently. Figure 15 shows
the forbidden and allowed regions for three select impact parameters.

Whereas, the outer forbidden region of the infinitésimal dipole
pinched off at ¥ = -77c = -1.0, Y. is a function of A for the current
loop. A saddle point exists at ¥ = ¥ and the saddle point method treated
in Ref. [10] provides the functional dependence of Y upon X :

pc12  [4B(K) T 12
[x] [—?X? Pl =0 (IV-12)
_ -2p
. = ——— E(K (IV -13)
2 2
7 [pe- A7)
where
A
Kk = g IV -14)
C

E(k) + [k?* - 1]K(k)
kZ

B (k) (IV-15)

P is the radial distance of the saddle point from the origin, in the
equatorial plane, of the (p,6) coordinate system.
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Table I gives computed values of 7(: and P for select values of A .,
Equation (IV-12) is solved by iteration for P, and 7(: is then com-
puted from Eq. (IV-13). As A =0, -Ye 7 Pc 1.0 ; and as A = oo,

- Yc —>pc/2 =X :

We shift our coordinate system origin to the loop by the trans-
formation:

p sin § = X +p sin8
N (IV-16)
PpcosB = p cos 6

where (3,5) is the polar coordinate system centered on the loop.

0 is measured from the perpendicular to the plane of the loop and 0
is the radial coordinate measured from the loop. Equation (IV-6)
becomes:

4k? C(k) 27
TALp? + 4% + 4D sin O] * X +p sin 0 (IV-17)

where

4X[X + psin 6]

kZ
p2 + 42 +4xp'sin §

(IV -18)

This coordinate system has the advantage that for a given Q,A ,'_Y )

and 6 ; p_is single valued. We also define a corresponding coordinate
system (r,6) in real space. Rewriting Eq. (IV-17) and setting

Y = Y

_ 2k>C (k) 27
Qc = TER+psmBl% * N+ Fsin 0 (v-19)

Differentiating Eq. (IV-19) with respect to P and employing the necessary
differentiation formulae for elliptic integrals in Jahnke and Emde:
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5x 107
10
2 x 10
5x 10
10
-1
2x10
3.6 x 10~
5x 10
1.0
2.0
5.0
1
10
1
2x10
5% 10
2
10
2
2x10
2
5x10
10

TABLE 1
Computed Values of 7(: and P for

Selected Values of A

?C pC p(,Z = pC/A

-1. 0000044 1.0000438 200.0028767
-1. 0000185 1.0000564  100.0056444
-1. 0000749 1. 0002250 50.0112522
1. 0004684 1. 0014050 20.0281010
-1.0018709 1. 0056047 10. 0560472
-1.0074358 1.0221818 5.1109088
-1.0236563 1. 0697641 2.9715670
-1.0446118 1.1298177 2.2596354
-1.1598476 1. 4405107 1.4405107
-1.5006854 2.2691984 1.1345992
-2.8061874 5.1213780 1. 0242756
-5.1959389 10. 0626318 1.0062632
-10.1198181 20. 0316664 1.0015833
-25.0595632 50.0127189 1.0002544
-50. 0341544 100. 0063642 1. 0000636
-100. 0192378 200. 0031828 1.0000159
-250. 0068096 500. 0012732 1. 0000025
-500. 0047909 1000. 0006366 1. 0000006
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0 Qc —25’-(; sin 6

09 ~ [A+p sinf]2

-k o~ isz'pV (b -cml)
aA2[L +p sin 5]3;2<C(k) sin 6+ Zh -[1 - k°] sin@ {—I—T}

(IV -20)

where D(k) is another special complete elliptic integral.

We are now in a position to compute the allowed solid angle
at any point in the field. Given a point ('17, @',d)) in real space
and a loop radius, a , we map the point into (rf;‘, '5’,4)) coordinates
by the Stérmer transformation and Eq. (IV-7). We compute 7Tq
from Eqs. (IV-12) and (IV-13). Next we compute Q¢ and 0 Qc/aa‘
from Eqs. (IV-19) and (IV-20) to deter mine which of the four
regions contains the point. The allowed solid angle  is, as in the
case of the infinitesimal dipole:

Q = 0 if Q¢ =1.0 (IV-21)

“if Q¢ =-1.0
Q = 4rx { _

if -1.0<Qc< 0 and %%% 0 IV -22)

Q= 2r[1 -QJ if -1.0< Q. <1.0 and %%9 <0 (IV-23)

The momentum cutoff at point (¥,0,¢) is given by Eq. (II -34):

qM
4 w¥2

Ve, 1) P (Ve, 1) (IV -24)

pcu’coff

To compute ﬁ'(’?c, 1) , we recall that 70 is a function of particle mo-
mentum through A and p. of Eqs. (IV-12) and (IV-13). Q¢ of

Eq. (IV-19) is set equal to one and Eqgs. (IV-12), (IV_—13), and (IV-19)

a£e~solved simultaneously by iteration to obtain BJ('YC, 1), given point
(r,9,9) and loop radius;: a .
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As an example, Figs. 16 and 17 show the flux ratio in the field
of a current loop with a radius of ten meters. The points are on the
surface of a toroid P = 10 meters at selected § . The loop has the
same dipole moment as the infinitesimal dipole. We notice that, for
the current loop, there is a smaller variation of the cutoff energy
with latitude compared to the infinitesimal dipole.

The totally shielded region is oval-shaped for small A becoming
more nearly circular as A increases. The partially shielded region
is also oval-shaped, becoming more circular as A increases. As
A increases even further, the partially shielded region becomes oval-
shaped again, confined to polar angles near the plane of the loop as
shown in Fig. 18. Thus, low-energy particles are forbidden to enter
a large, flattened doughnut-shaped region around the loop and high-
energy particles are forbidden to enter a smaller circular doughnut-
shaped region. Figure 18 shows the totally and partially shielded
regions in the (p’,0) plane for selected X . The (p’,0) coordinate
system is a coordinate system in real spacein which the forbidden
and allowed regions are normalized by the loop radius according to the
transformation: -

R (IV -25)

Equation (IV-6) becomes
N nxz[p'tk:(;(pk’) sin g + 1]k ¥ )\p'zs‘_iyn 6 (Iv-26)
K = 4p” sin 0 . IV -27)

p’? + 2p’sin 6+ 1

The advantage of this coordinate system is that the loop is located
at p’=1, 6 =7 /2, independent of the loop radius.

The distance, Ap'T , between the intercepts of the totally

shielded region in the plane of the loop is plotted in Fig. 19, repro-
duced from [11] . As Levy pointed out, the totally shielded region
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is largest for small A , i.e., the loop is more effective as a shield
for particles with a large Stormer radius in comparison to the loop
radius. The loop is quite effective as an ''all or nothing shield" up to
AR 1,0 and then its effectiveness decreases very rapidly with A
The distance, Apl'a , between the intercepts of the partially shielded
region in the plane of the loop is also plotted in Fig. 19. Ap'p
decreases slowly with A andat A=1.0, &pp/Aply = 102, For
larger A , this ratio increases very rapidly with increasing A .
We observe that the partially shielded region exists when the totally
shielded region has disappeared, and thus assumes an additional
importance in the high energy regime where the totally shielded
region is so small that it is insignificant.

Figure 20 shows the constant flux contours in the (r, 6) plane

of our 10-meter current loop, analogous to Fig. 14, for 6.87 Bev
protons and other particles of equal rigidity.
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APPENDIX I

EQUATIONS OF MOTION IN SPHERICAL CCORDINATES

The relativistic Hamiltonian for charged particle motion in a
static magnetic field is (Ref. 1) :

where

P

For our dipole field:

Hamilton's canonical

1
= [(P - qA)? ¢® + mZ c*]* (1A-1)
~ Pe FS P -~
= P — -
rr+r 0+——Lrsin6¢) (TIA -2)
K = Aylr,0) ¢ (1A -3)
equations provide us with the equations of motion:

2
f:%} (1A -4)
2
© Pgc _
0 = & (1A-5)
;- Pg A (1A -6)
¢ rH sin 6 r sin 0 144 -
L ¢ |BE, [_ms )f 22|
pr T H 3 + r sin 0 _qu) \rz sin 6 ! or ] (IA-7)
. _c? Py P¢ cos 6 81":@}
Po = E[r sin 6 qu)}Lr sin? 0~ 1730 | (IA -8)
[ = A -
P¢ 0 (IA -9)




Since (Ref. 1):

|

= BL 4 qa (IA-10)
by

where P; is the particle canonical momentum (linear or angular)
conjugate to the ith coordinate and p; is the particle mechanical
momentum (linear or angular) conjugate to the ith coordinate; then
Py, is the r -component of the linear mechanical momentum and Py
is the 6 -component of the angular mechanical momentum vector.
Even though the potential field is velocity dependent, the Hamiltonian
is still the total energy and a constant of the motion [1]:

H = mc? = [p?c? +mZc?]? . (IA-11)

Since the total energy is a constant of the motion, p is also a constant
of the motion. If

2T = B8 (IA -12)
P

r=-Fr (IA-13)
P

and dividing and multiplying Eqs. (IA-7) and (IA-8) by p® , and re-
calling Eqs. (II-8) and (II-9), Eqgs. (IA-7) and (IA-8) become:

_ ar? 2y q aA¢J
Pr = pv [? Q r2sin § p Or (1A -14)
. 2vcos 8§ q 0Ay

Solving Eq. (IA-15) simultaneously with Eqs. (IA-4), (IA-5), (IA-6),
we obtain:
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%Q - . [ 2 [.Z_‘Y_CE"_ _%a_A¢_] ar + C, (IA -16)

Py *° 2Y cos 6 q JA 2
—_— = 2 - = -
. fKe! [r ey B 29 r2do+ C, (1A -17)
Py _ ) 27 cos 0 9 9A¢ )
5 rd s1n9[—-———r Sz B T + C; (IA-18)
If
T=_o (1A -19)
= o -
x= |2Ycosf a 0Ad (1A -20)
" |psin26 " p 06 )
the most complete implicit solution for T in Stormer space is:
-2 = _ 1 Q 1 2 Xp¢ sin O
F-l“—-4f7Xdp+2fQXpd9-——————4 +C,
(IA-21)

For our infinitesimal dipole, Eq. (IA-17) may be integrated explicitly
and solved simultaneously with Eq. (IA-18):

—2 . 2 . —_
41"2 - I = -[ 4‘}; + Slnze] +¢ cos B [SIne - i’YGA] +C,3
sin” 0 o) p S1 i (IA—ZZ)

Equation (IA -22) gives T as a function of particle motion projected
onto (0,¢) coordinate surfaces (i.e., surfaces P = constant). -2T

is the ratio of the 8 component of the particle mechanical momentum
about the origin of the dipole centered coordinate system to the total
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linear momentum, analogous to the impact parameter -27 at infinity.
T is analogous to Q, and Cj are arbitrary constants.

Solving Eq. (IA-14) simultaneously with Eqs. (IA-4), (IA-5),
and (IA -6), we obtain:

P.|2 T? dp 27 q O0JA
— = 8 + 2 -= -
(p) J = Jo| st -2 52| ety a2y
P T Q 2 q 0A¢
—X = -2/ = 49 - = -2 de + C
P f P 9 f 2T [ p° sin 6 p 0dp p 0 5
(1A -24)
—2 —
P I sin6d¢ 2 qpPsinb 8A¢J
= 4 ) =SB CP - +C
P J Qp ¢[ P P dp (1A -25)
A co r_nplete implicit solution analogous to Eq (IA -22) giving 7 = 7(p, 0,
¢,7,I,CL) can be easily derived:
- 27 q 9A¢
YE 5>——ru- -+ 1A -26
¢ sin @ p 0p ( )

oY p sin 6 + Ch (IA-27)

For the infinitesimal dipole, portions of Eqs. (IA-23), (IA-24), and
(IA -25) may be integrated explicitly:

2 —
4y 47 sin®0
2
= — d - — =e=——+C IA -28
T f P - Z Sinze p3 p4 4 ( )
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T in 60
o= zf = a6+ J 9[ Y +s”; ] d6 - Cs  (IA-29)
P T

Q
l

—2 -
I'“ sin 0 20 |—  sin®0
4 [ =222 + 2= - -
f 02 dé P [7 + 5 J Cs (IA -30)

T is the cosine of the angle between the radius vector and the projec-
tion of the particle momentum vector onto the meridian plane. Referring

to Fig. 1, 7 =sina cos . 7T ,Q, T are related by expressing P « P
in spherical coordinates:

=2

T
1 o= g2 4 2

p?

+ Q° (TA -31)

Equation (IA -22) may be solved simultaneously with Eqs. (IA-29)
and (IA -30) yielding 7T explicitly as a function of particle motion pro-
jected onto surfaces p = constant. Equations (IA-21)and (IA-27) are
coupled nonlinear integral equations. Their solution would give 7 and

T as functions of particle motion in three-dimensional space —a highly
desirable solution.
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